Programming

An Intfroduction 1o Introductions

3/1/2013 @]

What is a Program?

“Detailed, step-by-step set of instructions telling the
computer exactly what 1o do.” — Zelle

A program is a solution to a problem.

Neural Networks versus Human Brains

Programs are written in programming languages.

o Some languages are compiled, some interpreted, others somewhere in
between.

o Languages use grammars that are context-free.

How to express what to do in a way that

o Can be verified to do what you think it does
o Can be modified to do something else if the requirements change
o Performs in areasonable amount of time within the resources available

3/1/2013 @2

Why Program?

Perform a (repetitive) task quickly and reliably.
Software Engineering versus Scientific Computing

Computer Science: What processes can be
described, what qualities do they have, and what
can we know about them?

Being able to program develops analyfic skills and
frees one from burdensome repetition. You're too
valuable for busy work.

3/1/2013 @3

Programing Languages

There are many, many, many.

Tool for the job.

Some general, some domain specific.
People like to argue about which is better.

Most real-world solutions use several different
languages.

3/1/2013 @ 4

Programing Languages 2

« Each language has rules — the syntax.

 Each language has idioms — efficient way of doing
things specific to the language.

« Paftfterns are general solutions to problems
commonly encountered.

° 3/1/2013 @5

Programing Languages 3

Research into graphical representations of programs, a higher
level way to intferact with the code.

Talend Open Studio (1.0,
Eile Edt View Window Help

.20061004-1901) | ccarbone@talend.com | Lancement

& runAliProcess 0.1
) SData Generation
& China
® = OCA
= @b code
& Routines 0.1
'
=] E Metadata
= \ Db Connections
&3] File delimited
=} _;] File positional
- = 1] positionel 0.1
i [schema 0.1
[} ﬂ File regex

" tilelnput

10000 rbws in 0,84

0

@) Reposkory (Lancement) 3 2] =‘ﬁ"|}'xbple | Model Routines ||}Jobnmnm ||}Jﬂbmuﬂm
BZ Business Models] * * : : : = : : : : = 2 > % g
= a Job Designs g‘
1 Metadata STATEREF 3
B £ 2DBFeed 50 rows in 0,055 e
85 3p 943 9romsls Connecticut (bain)— ‘/ﬁeo.mo‘ putDelimited_1
56 4 Workflow row2 {1.ookup) B 191 rows in 2,045

' 93,67 rows/s
Atlanta (Main)

J193317 rovs/\ RurBefire Ny, womegy W " tFileGutputyML_1
/ - N \\ 211 rows in 2,055
/ 1l J rejet (Main) \\‘ Backup (Msin) \\ 103,08 rowsfs
~Jhe & =
| 2l) | ltgrate | 4 . .) . : ;
tFileList 1 i- = R SR
tMsgBox_1 tSystem_1 Rejet {correspondance impossible) tFileOutputDelimited_3

3rows in 0,75s 2 rows in 2,055 9938 rows in 2,055

© 3,99 roms/s * 0,98 rowsfs 4886, 61 rows/s

\é] Documentation
fg Recycle bin

7] Properties £2 . PeriDoc | RegExp | Tasks | Prablems (Job Processing) | Modules | Run (Job Processing) | Error Log |

8]

SE 2 I = [Main : 5/0 tMap
SR T e]
oy || e
- Documentation
= tFilelnputCSY_1 ——————— Preview: |Joo® =15 00 -
Error Message - ERROR_MESSAGE (After) e — @ H_l =l
Perl Error Message - PERL_ERROR_MESSA¢ o - .
Perl Error Code - PERL_ERROR_CODE (Afts o voibsen | aven
Number of line - NB_LINE (After) . e =
i 00 L =i R ST
tFieOutputDelimited_1 7]
2 tFieOutputDelimited_2 s = (o T
ot i) L
E; :Fkam.l”“_l Viwildtan) :«:. :::::1] Lo
8 tFieOupuDelmted_3 g T e
3 tSvstem 1 X =
ﬂ | b|

3/1/2013 @6

Anatomy of a Program

3/1/2013 @7

Comments

* A way of putting information into code that does
not effect execution of the code.

Sometimes pound symbol
// Or this

/* or this */

% Even this maybe

3/1/2013 @8

Statements

* A unit of detail best described as a step in your
program.

« Some languages use delimiters like the semicolon to
indicate that one statement has ended. Python
can use semicolon or a line break

Stmtl; Stmt2;
Stmt3;

° 3/1/2013 @9

Blocks

« A blockis a collection of statements that share the
same state. A single statement can be a block.

* |In Python, blocks are contiguous areas of the same
indentation. In most languages the curly braces are
used to denote blocks.

{ Stmtl; Stmt2; } {Stmt3;}

° 3/1/2013 @10

Variables

« Variables are a way of labeling and storing data.
o Static versus dynamic
 Datfa types

float radius = 1.62f;
var radius = 1.62;
radius = 1.62;

String name = “Edgar”;
var name = “Edgar”;
name = “Edgar”

. 3/1/2013 @ 11

Functions

e Insfructions
e Return values

« Arguments
function two() return 1+1;

function plusOne(x){
return x+1;

}

plusOne(2)

. 3/1/2013 @12

Variables Again

« Can be asingle value, or a complex instance of a
data type:

o Arrays
o Functions
o Objects

var places = array(“Here”, “There”,
“Everywhere”);

Person Edgar = new Person(“Edgar”,”Hassler”);

var f = function(t){ return(t*(t+1)); }

° 3/1/2013 @13

Objects

* |In the object oriented (OO) paradigm we allow for
the definitions of objects that combine data with
behavior.

« Function that are attached to an object are called
methods. Variables that belong to an object are
called Properties.

Person Edgar = new Person(“Edgar”,”Hassler”);
Edgar->visitClass();
print Edgar->getPosition();

. 3/1/2013 @ 14

Scope
« The variables that can be seen by statements in the

same block are called the scope.

« Qutside of the block, these variables are not visible,

and may be reassigned by the computer 1o some
other variable.

var test = 1;

{

}
print test

var test = 2;

3/1/2013 ® 15

Scope

def mpower(m):
def raiseTo(n):
return m**n

f = mpower(2)
t(4) # 16

3/1/2013 @ 16

Control Structures

* Any non-trivial program will change its behavior
based on the inputs, and control structures are how
this is done.

* Most loops involve control structures that govern
their execution.

O

o O O O O O

If then

If else then
While do
Do until
Switch case
For
Foreach

3/1/2013 @17

Control Structures

* |n Python, compare using

< Less than

<= Less than or equal
—— Equal

>= Greater than or equal
S Greater than

| = Not equal to

* True, False. Negate using not

° 3/1/2013 @18

Floating Point Numbers

e How we store real numbers.
« Sign, base, exponent
« Underflow and overflow

test = 0.1
while test < test + 0.1 do

test = test + 0.1
end

° 3/1/2013 @19

31337 H4X0Rz

* The instructions that constitute your program are
stored in memory.

« Variables are stored in memory.

« |f careless, external data written to memory can
overwrite your instructions.

char buf[8];
gets(buf);
fprintf(“%s\n”,buf);
return 0;

° 3/1/2013 @20

Concurrency

« Computers today can do several tasks at once. But
our methods of programming are usually ill-suited to
address this.

* A whole set of design techniques exist o address
these issues.

from threading import Thread, Lock
mutex = Lock()

def processData(data):
mutex.acquire()
try:
print('Do some stuff')
finally:
mutex.release()

while True:
t = Thread(target = processData, args = (some_data,)) 3/1/2013 21
t.start()

Massive Parallelism

» For supercomputing clusters and GPU computing,
we have very many threads that we can run in
parallel.

sapply(initalConditions,function(start){
. code to be run many times here ..

1)

. 3/1/2013 @22

Programming Languages

 Fortran, C, C++

 Java
 Python, PHP, Ruby

3/1/2013 @23

Practical Concerns

3/1/2013 @24

Get Python

« |sit already on your computere Try python.

 Download it from
hitp://www.python.org/download/

° 3/1/2013 @25

http://www.python.org/download/
http://www.python.org/download/
http://www.python.org/download/

Integrated Development
Environment (IDE)

 And IDE helps you program.

» Eclipse -> PyDEV, or something else.

3/1/2013 @26

Iry 1t out!

e http://www.learnstreet.com/lessons/study/python
 hittp://wiki.python.org/moin/BeqginnersGuide/NonProgrammers

convert.py

A program to convert Celsius temps to Fahrenheit

def main():
celsius = input("What is the Celsius temperature? ")
fahrenheit = 9.0 / 5.0 * celsius + 32

print "The temperature is", fahrenheit, "degrees
Fahrenheit."

main()

. 3/1/2013 @27

http://www.learnstreet.com/lessons/study/python
http://www.learnstreet.com/lessons/study/python
http://wiki.python.org/moin/BeginnersGuide/NonProgrammers

Iry 1t out!

quadratic4.py
import math
def main():
print "This program finds the real solutions to a quadratic\n"
a, b, ¢ = input("Please enter the coefficients (a, b, c): ")
discrim = b * b - 4 * a * ¢
if discrim < O:
print "\nThe equation has no real roots!"
elif discrim == O:
root = -b / (2 * a)
print "\nThere is a double root at", root
else:
discRoot = math.sqrt(b * b - 4 * a * ()
rootl = (-b + discRoot) / (2 * a)
root2 = (-b - discRoot) / (2 * a)
print "\nThe solutions are:", rootl, root2

3/1/2013 @28

A Little More Theory

3/1/2013 @29

Data Structures

« Commonly used ways of organizing data and
behavior.

« Examples:

Queue - FIFO

Stack — LIFO

Linked List — Single and Double
Trees — for sorting and accessing
Many more

O O O O O

° 3/1/2013 @30

Ob]ect Oriented Principles

* Hierarchy — objects belong to classes organized into
hierarchy. Ad hoc ontology.

« Establishing these relationships helps build an
understanding of the abstract qualities shared by
different parts of your problem.

« A decomposition of a problem into parts
(separation of concerns, encapsulation)

« Allows us to change one part of the program with a
guarantee the rest will function (modularity). This
also helps with re-use.

° 3/1/2013 @3]

Design Patterns

Model, View, Controller

o Model - Encapsulates the data and its behavior
o View — Describe various ways to present the model data
o Controller - Handle requests and decide on models and views.

Command
o Let an object represent a command and its state.

Lazy Loading

o Only use resources when you need them.

Database Patterns

o Active record — Object represents live copy of database data
o Data mapper — A third party maps data between models and database
o Table module — A single object handles all database data

3/1/2013 @32

Aspect Oriented Princip.

« Crosscutting concerns

 Example:

o Several controllers require that the connection be secure — Aspect!
o Several threads want to wait until the stack of jobs is empty — Aspect!

° 3/1/2013 @33

Abstract Ideas

Once and Only Once

o All code must appear in only one place. No copy pasting!
o Sometimes called Don't Repeat Yourself (DRY) principle.

Separate the What from the How

o A method should comprise one how, or two or more whats.
o “What"is a delegation to another method with a meaningful name.
o “How" is a method of doing one thing.

The What but not the Why

o Code is a blueprint for what to do. An architect provides blueprints for a house
and not the reason for certain features. Code and architecture are separate
concerns.

o Use comments liberally to document the “Why".

Everything should be testable.

o Also those fests should be automatable.

You Aren’t Gonna Need It (YAGNI) (KISS corollary)

o Only write code for things when you need it. Prevents over-engineered
solutions.

3/1/2013 @34

A Comment on Time

 One of the hardest types of data to work with is
time. Noft only does it vary relative to physical
location, but it has events that have non-standard

periodicity

New years day — 15 of each year

Labor day - 1 Monday of September

There are 52 weeks in a year, most years

A week starts on Sunday, unless it starts on Monday

There is a leap day every 4 years, except every 100 years, except every
400 years.

o Easter — no one knows.
o Some cultures rely on lunar calendars

O O O O O

° 3/1/2013 @35

