
Programming
An Introduction to Introductions

3/1/2013 1

What is a Program?
• “Detailed, step-by-step set of instructions telling the

computer exactly what to do.” – Zelle

• A program is a solution to a problem.

• Neural Networks versus Human Brains

• Programs are written in programming languages.
o Some languages are compiled, some interpreted, others somewhere in

between.

o Languages use grammars that are context-free.

• How to express what to do in a way that
o Can be verified to do what you think it does

o Can be modified to do something else if the requirements change

o Performs in a reasonable amount of time within the resources available

3/1/2013 2

Why Program?
• Perform a (repetitive) task quickly and reliably.

• Software Engineering versus Scientific Computing

• Computer Science: What processes can be

described, what qualities do they have, and what

can we know about them?

• Being able to program develops analytic skills and

frees one from burdensome repetition. You’re too

valuable for busy work.

3/1/2013 3

Programing Languages
• There are many, many, many.

• Tool for the job.

• Some general, some domain specific.

• People like to argue about which is better.

• Most real-world solutions use several different

languages.

3/1/2013 4

Programing Languages 2
• Each language has rules – the syntax.

• Each language has idioms – efficient way of doing

things specific to the language.

• Patterns are general solutions to problems

commonly encountered.

3/1/2013 5

Programing Languages 3
• Research into graphical representations of programs, a higher

level way to interact with the code.

3/1/2013 6

Anatomy of a Program

3/1/2013 7

Comments
• A way of putting information into code that does

not effect execution of the code.

3/1/2013 8

Sometimes pound symbol
// Or this
/* or this */
% Even this maybe

Statements
• A unit of detail best described as a step in your

program.

• Some languages use delimiters like the semicolon to

indicate that one statement has ended. Python

can use semicolon or a line break

3/1/2013 9

Stmt1; Stmt2;
Stmt3;

Blocks
• A block is a collection of statements that share the

same state. A single statement can be a block.

• In Python, blocks are contiguous areas of the same

indentation. In most languages the curly braces are

used to denote blocks.

3/1/2013 10

{ Stmt1; Stmt2; } {Stmt3;}

Variables
• Variables are a way of labeling and storing data.

• Static versus dynamic

• Data types

3/1/2013 11

float radius = 1.62f;
var radius = 1.62;
radius = 1.62;

String name = “Edgar”;
var name = “Edgar”;
name = “Edgar”

Functions
• Instructions

• Return values

• Arguments

3/1/2013 12

function two() return 1+1;

function plusOne(x){
 return x+1;
}

plusOne(2)

Variables Again
• Can be a single value, or a complex instance of a

data type:
o Arrays

o Functions

o Objects

3/1/2013 13

var places = array(“Here”, “There”,
“Everywhere”);

Person Edgar = new Person(“Edgar”,”Hassler”);

var f = function(t){ return(t*(t+1)); }

Objects
• In the object oriented (OO) paradigm we allow for

the definitions of objects that combine data with

behavior.

• Function that are attached to an object are called

methods. Variables that belong to an object are

called Properties.

3/1/2013 14

Person Edgar = new Person(“Edgar”,”Hassler”);
Edgar->visitClass();
print Edgar->getPosition();

Scope
• The variables that can be seen by statements in the

same block are called the scope.

• Outside of the block, these variables are not visible,

and may be reassigned by the computer to some

other variable.

3/1/2013 15

var test = 1;
{
 var test = 2;
}
print test

Scope

3/1/2013 16

def mpower(m):
 def raiseTo(n):
 return m**n

f = mpower(2)
f(4) # 16

Control Structures
• Any non-trivial program will change its behavior

based on the inputs, and control structures are how

this is done.

• Most loops involve control structures that govern

their execution.
o If then

o If else then

o While do

o Do until

o Switch case

o For

o Foreach

3/1/2013 17

Control Structures
• In Python, compare using

• True, False. Negate using not

3/1/2013 18

Python Natural Lang.

< Less than

<= Less than or equal

== Equal

>= Greater than or equal

> Greater than

!= Not equal to

Floating Point Numbers
• How we store real numbers.

• Sign, base, exponent

• Underflow and overflow

3/1/2013 19

test = 0.1

while test < test + 0.1 do
 test = test + 0.1
end

31337 H4X0Rz
• The instructions that constitute your program are

stored in memory.

• Variables are stored in memory.

• If careless, external data written to memory can

overwrite your instructions.

3/1/2013 20

char buf[8];
gets(buf);
fprintf(“%s\n”,buf);
return 0;

Concurrency
• Computers today can do several tasks at once. But

our methods of programming are usually ill-suited to

address this.

• A whole set of design techniques exist to address

these issues.

3/1/2013 21

from threading import Thread, Lock

mutex = Lock()

def processData(data):
 mutex.acquire()
 try:
 print('Do some stuff')
 finally:
 mutex.release()

while True:
 t = Thread(target = processData, args = (some_data,))
 t.start()

Massive Parallelism
• For supercomputing clusters and GPU computing,

we have very many threads that we can run in

parallel.

3/1/2013 22

sapply(initalConditions,function(start){
 … code to be run many times here …
})

Programming Languages
• Fortran, C, C++

• Java

• Python, PHP, Ruby

3/1/2013 23

Practical Concerns

3/1/2013 24

Get Python
• Is it already on your computer? Try python.

• Download it from

 http://www.python.org/download/

3/1/2013 25

http://www.python.org/download/
http://www.python.org/download/
http://www.python.org/download/

Integrated Development
Environment (IDE)

• And IDE helps you program.

• Eclipse -> PyDEV, or something else.

3/1/2013 26

Try it out!
• http://www.learnstreet.com/lessons/study/python
• http://wiki.python.org/moin/BeginnersGuide/NonProgrammers

3/1/2013 27

convert.py
A program to convert Celsius temps to Fahrenheit
def main():
 celsius = input("What is the Celsius temperature? ")
 fahrenheit = 9.0 / 5.0 * celsius + 32
 print "The temperature is", fahrenheit, "degrees
Fahrenheit."
main()

http://www.learnstreet.com/lessons/study/python
http://www.learnstreet.com/lessons/study/python
http://wiki.python.org/moin/BeginnersGuide/NonProgrammers

Try it out!

3/1/2013 28

quadratic4.py
import math
def main():
 print "This program finds the real solutions to a quadratic\n"
 a, b, c = input("Please enter the coefficients (a, b, c): ")
 discrim = b * b - 4 * a * c
 if discrim < 0:
 print "\nThe equation has no real roots!"
 elif discrim == 0:
 root = -b / (2 * a)
 print "\nThere is a double root at", root
 else:
 discRoot = math.sqrt(b * b - 4 * a * c)
 root1 = (-b + discRoot) / (2 * a)
 root2 = (-b - discRoot) / (2 * a)
 print "\nThe solutions are:", root1, root2

A Little More Theory

3/1/2013 29

Data Structures
• Commonly used ways of organizing data and

behavior.

• Examples:
o Queue – FIFO

o Stack – LIFO

o Linked List – Single and Double

o Trees – for sorting and accessing

o Many more

3/1/2013 30

Object Oriented Principles
• Hierarchy – objects belong to classes organized into

hierarchy. Ad hoc ontology.

• Establishing these relationships helps build an

understanding of the abstract qualities shared by

different parts of your problem.

• A decomposition of a problem into parts

(separation of concerns, encapsulation)

• Allows us to change one part of the program with a

guarantee the rest will function (modularity). This

also helps with re-use.

3/1/2013 31

Design Patterns
• Model, View, Controller

o Model – Encapsulates the data and its behavior

o View – Describe various ways to present the model data

o Controller - Handle requests and decide on models and views.

• Command
o Let an object represent a command and its state.

• Lazy Loading
o Only use resources when you need them.

• Database Patterns
o Active record – Object represents live copy of database data

o Data mapper – A third party maps data between models and database

o Table module – A single object handles all database data

3/1/2013 32

Aspect Oriented Princip.
• Crosscutting concerns

• Example:
o Several controllers require that the connection be secure – Aspect!

o Several threads want to wait until the stack of jobs is empty – Aspect!

3/1/2013 33

Abstract Ideas
• Once and Only Once

o All code must appear in only one place. No copy pasting!

o Sometimes called Don’t Repeat Yourself (DRY) principle.

• Separate the What from the How
o A method should comprise one how, or two or more whats.

o “What” is a delegation to another method with a meaningful name.

o “How” is a method of doing one thing.

• The What but not the Why
o Code is a blueprint for what to do. An architect provides blueprints for a house

and not the reason for certain features. Code and architecture are separate
concerns.

o Use comments liberally to document the “Why”.

• Everything should be testable.
o Also those tests should be automatable.

• You Aren’t Gonna Need It (YAGNI) (KISS corollary)
o Only write code for things when you need it. Prevents over-engineered

solutions.

3/1/2013 34

A Comment on Time
• One of the hardest types of data to work with is

time. Not only does it vary relative to physical

location, but it has events that have non-standard

periodicity
o New years day – 1st of each year

o Labor day – 1st Monday of September

o There are 52 weeks in a year, most years

o A week starts on Sunday, unless it starts on Monday

o There is a leap day every 4 years, except every 100 years, except every

400 years.

o Easter – no one knows.

o Some cultures rely on lunar calendars

3/1/2013 35

